Assuring Good Style for ObjectOriented Programs 

 Karl J. Lieberherr and Ian Holland 

Full Text Available at  ftp://ftp.ccs.neu.edu/pub/demeter/documents/papers/LH89-law-of-demeter.ps

Below are significant sections of the paper ..

We introduce a simple, programming language independent rule (known inhouse as 
the Law of Demeter) which encodes the ideas of encapsulation and modularity in an 
easy to follow form for the objectoriented programmer. The rule achieves the following 
related benefits if code duplication, the number of method arguments and the number 
of methods per class are minimized: Easier software maintenance, less coupling between 
your methods, better information hiding, methods which are easier to reuse, and easier 
correctness proofs using structural induction. We show relationships between the Law and 
software engineering techniques, such as coupling control, information hiding, information 
restriction, localization of information, narrow interfaces and structural induction. We 
discuss two important interpretations of the Law (strong and weak) and we prove that 
any objectoriented program can be transformed to satisfy the Law. We express the 
Law in several languages which support objectoriented programming, including Flavors, 
Smalltalk80, CLOS, C++ and Eiffel. 

Our experience has been that the Law promotes maintainability and comprehensibility of the 
software. This is a result of the small method size and the predicable messagepassing patterns, 
both of which are caused by the application of the Law. In other words, following the Law in 
concert with rules such as, minimizing code duplication, minimizing the number of arguments, 
and minimizing the number of methods, produces code with a characteristic and manageable 
form
. 
We have also seen that adherence to the Law prevents programmers from encoding details of 
the class hierarchy structure in the methods. This is critical to the goal of making the code 
robust with respect to changes in the hierarchy structure. These changes occur very frequently 
in the early stages of development. 

The goal of the Law of Demeter is to organize and reduce the behavioral dependencies between 
classes. Informally, one class behaviorally depends on another class when it calls a method 
(through a message sent to an object) defined in the other class. The behavioral dependencies 
encoded in the methods of an objectoriented program determine the complexity of the pro 
gram's control flow and the level of coupling between the classes. This paper examines these 
relationships and illustrated how the Law impacts their existence. 

The key contribution of the Demeter system is to improve programmer productivity by sev 
eral factors. This is achieved in a number of ways. First, Demeter provides a comprehensive 
standard library of utilities. Second, a significant amount of code is generated from the pro 
grammers objectoriented design. Third, Demeter includes a number of tools that automate 
common programming practices. 

Definition : A supplier object to a method M is an object to which a 
message is sent in M. The preferred supplier objects to method M are: 

    - the immediate parts of self or 
    - the argument objects of M or 
    - the objects which are either objects created directly in M or objects in 
      global variables. 

The programmer determines the granularity of the phrase ``immediate subparts'' of self for the 
application at hand. For example, the immediate parts of a list class are the elements of the 
list. The immediate parts of a ``regular'' class object are the objects stored in its instance 
variables. 

